
Creating the Ingest LDD Dictionary Input File 

Prerequisites 
If you have not already gotten familiar with a validating editor, or at least a schema-aware editor, you 
should take the time to do so first. You will thank me later. 

If you have not tried to write or read a PDS4 XML label before, you should probably at least walk 
through one with a knowledgeable guide. Contact your PDS node consultant. 

If you are using a schema-aware or validating editor, you should know how to create a new XML file 
from a schema file using your editor, and how to reference the schema and the related Schematron 
file if you are validating using your editor. You should use the PDS4 namespace schema to create 
your XML file, and select the Ingest_LDD element as your root element. 

If you are using a plain text editor, you should know how to create a new XML file from scratch with 
all the appropriate schema references, or have a good PDS4 template to follow. Your root element - 
the one containing the XSD schema references - is called Ingest_LDD. In this case you are also 
going to need some way to validate the result before you try to run it through LDDTool. Because 
the Ingest_LDD structure is part of the PDS4 Information Model, you can use the PDS4 Validate 
Tool to do this. 

Some additional useful links: 
• You may find useful context information from Using Local Dictionaries. 
• File:LDDtemplate 1900.zip contains a minimal skeleton template to use as a starting point, if you 

need one (you'll still have to adapt it for your schema locations). 
• File:LDDTool 1900 examples.zip contains a working set of input Ingest_LDD files and labels 

which use the classes defined to illustrate the dictionary techniques described in the pages 
referenced below. 

Basic Strategies 
The Ingest_LDD class is the root of the XML document you are creating. In it, you are going to be 
defining a series of attributes and classes. You can think of attributes as scalars - single-valued 
entities that can be used to build classes. Classes can be nested, so one class can contain other 
classes as well as attributes. Note that classes cannot be nested recursively - either directly or 
indirectly. 

Following are some emerging best practices we've noted at SBN. 

Organization of the File Contents 

All attributes must be defined first; classes must be defined afterward. Within each section, however, 
there is no enforced ordering. In fact, it is not necessary to define one class before including it as a 
component of another class - although it has to be defined in the file somewhere. 

For non-trivial dictionaries you should give some thought to organizing the definitions in each section 
to facilitate development and maintenance. Attributes can be sorted alphabetically, for example, or 
grouped by purpose, subsystem, or some other mission-specific/whimsical criterion. You may also 
find it convenient to organize your class definitions in some sort of hierarchy - defining lowest level 
subclasses first, for example, then defining each successive level of containing classes. 

https://pds.nasa.gov/datastandards/training/documents/Using%20Local%20Dictionaries.pdf
https://pds.nasa.gov/datastandards/training/documents/LDDtemplate_1900.zip
https://pds.nasa.gov/datastandards/training/documents/LDDTool_1900_examples.zip


Naming Attributes and Classes 

The PDS and discipline namespaces employ a simple naming convention with these features: 
• Words in the name are separated by underscores. 
• Words in attribute names are all lower-case. 
• Words in class names are capitalized. 
• Abbreviations are generally avoided. 
• Word order usually follows English grammar unless there's a good reason not to. 

There are rare exceptions, but on the whole these are followed fairly consistently in the shared 
namespaces. There is no requirement that you use these conventions in your attribute names and 
classes, but you might consider the aesthetics and readability of the resulting label if you use 
conventions that are very far removed from the above. 

You are constrained to ASCII characters, so don't go nuts. 

Grouping Attributes into Classes 

In general, you can group attributes into classes and subclasses, or not, any way you want. The 
functional groupings established by comments in most PDS3 labels are, in general, a reasonable 
approach to class definitions. 

SBN recommends that all attributes be a member of some class from the dictionary. It may be valid 
to have "naked" attributes from mission dictionaries hanging around in the label <Mission_Area>, but 
from a user's point of view these attributes usually are lacking something in context. 

Beware of Slacking Off 

You must provide real, substantive definitions for all your defined attributes, and should endeavor to 
do so for all your classes. These definitions are part of the external peer review - reviewers will judge 
them. You do not want to be found wanting in this respect. 

If your attribute has a unit of measure, you must include the <unit_of_measure_type> in the 
definition. It is not sufficient to say, for example, "measured in nm" in the definition text without 
including unit_of_measure_type in the attribute definition. 

Use TBD sparingly, if at all. For non-trivial dictionaries, letting the population of TBDs grow 
unchecked can lead to major issues just before - or worse, at - review. 

A Note About Complexity 
The Filling Out the Ingest_LDD Class topic, below, only describes the basic techniques available in 
the Ingest_LDD class. It is possible to define fairly complex relationships within this dictionary and to 
other namespaces. In general, though, SBN discourages this for mission dictionaries. Internal 
complexity often leads to confusion on the part of users not affiliated with the original team, and 
referencing other namespaces establishes a connection between dictionaries that are under the 
control of two or more different stewards who may or may not be aware of any underlying 
assumptions that would be invalidated by future development, especially after end of mission. So on 
the whole, try hard to keep it simple and localized. If that seems impossible for your metadata or 
mission organization, check in with your PDS node consultant for examples of more complex 
procedures that haven't ripped asunder the fabric of space-time. 



Filling Out the Ingest_LDD Class 
Bear in mind while reading these descriptions that LDDTool and <Ingest_LDD>, as its input 
template, are products that will be updated regularly to keep pace with the development of the PDS4 
information model and the needs of the discipline dictionaries in development. The following sections 
describe the stable elements that provide the basic capabilities used in all dictionaries. You will come 
across undocumented options below and in the PDS master schema that are not yet ready even for 
this level of exposure. If you think you need them or could put them to good use, contact your PDS 
node consultant for more information. 

We'll tackle this one section at a time, starting with the attributes at the top of 
the <Ingest_LDD> class itself and moving down through the file structure: 

1. Dictionary Parameters - These attributes at the beginning of the Ingest_LDD file define the 
dictionary name, namespace abbreviation, steward, and so on. 
Filling Out the Ingest_LDD Attributes 

2. Attribute Definitions - This section will contain one DD_Attribute class for every attribute in 
the dictionary. All attributes must be defined in this section before any classes may be defined. 
Filling Out the DD_Attribute Class 

3. Class Definitions - This section will contain one DD_Class class for every class to be included 
in the dictionary. All classes must be defined in this section before any Schematron rules may 
be defined. 
Filling Out the DD_Class Class 

And for the brave-hearted, here are some Advanced Ingest_LDD/LDDTool Techniques: 
• Schematron Rules - Following your class definitions, you can add DD_Rule classes to define 

Schematron rules to be included in the output Schematron file. The LDDTool will automatically 
generate the Schematron rules required to support enumerated value lists, so you'll only need 
this if you want to specify additional constraints beyond those provided by 
the DD_Attribute and DD_Class definitions. 
Filling Out the DD_Rule Class 

• Referencing elements of other namespaces - Sometimes a dictionary writer may need to 
incorporate classes from another namespace into classes in the dictionary being written. This 
can be accomplished via a syntactical trick that should be used with caution. 
Advanced LDDTool Techniques: Cross-referencing Namespace Elements 

• Choice Lists - There is a xs:choice construct in the XML Schema Definition language that lets 
you specify that one (or more) of several different elements can be included in a containing 
complex element. Choice lists that allow more than one element to be included also 
circumvent the usual strict ordering of the XML Schema Definition language. 
Advanced LDDTool Techniques: Choice Lists 

• Any Blocks - The XML Schema Definition language any construct is designed specifically to 
stop schema validation at a particular point in the class definition, after which you could, 
technically, include any valid XML and a schema-based validator would let it pass unremarked. 
You should never do this in a mission dictionary unless directed to do so by a knowledgeable 
PDS dictionary expert. 
Advanced LDDTool Techniques: Any Blocks 

https://pds.nasa.gov/datastandards/training/documents/Filling%20Out%20the%20Ingest%20LDD%20Attributes.pdf
https://pds.nasa.gov/datastandards/training/documents/Filling%20Out%20the%20DD%20Attribute%20Class.pdf
https://pds.nasa.gov/datastandards/training/documents/Filling%20Out%20the%20DD%20Class%20Class.pdf
https://pds.nasa.gov/datastandards/training/documents/Advanced%20LDDTool%20Techniques.pdf
https://pds.nasa.gov/datastandards/training/documents/Filling%20Out%20the%20DD%20Rule%20Class.pdf
https://pds.nasa.gov/datastandards/training/documents/Advanced%20LDDTool%20Techniques.pdf
https://pds.nasa.gov/datastandards/training/documents/Advanced%20LDDTool%20Techniques.pdf
https://pds.nasa.gov/datastandards/training/documents/Advanced%20LDDTool%20Techniques.pdf

